

Clinical, Genomic Profile and Recurrent Somatic Mutations in 205 Chronic Lymphocytic Leukemia Treatment-Naive Patients B. Ferrer-Lores¹, A. Serrano¹, V. Adam², B. Navarro¹, C. Ivorra³, A. Medina⁴, M. Fernandez⁵, A. Rodriguez⁶, V. Martín⁵, MS. Durán⁷, E. Rios⁸, C.

INCLIVA | VLC

¹Hematology Department, Clinic University Hospital. INCLIVA, Valencia, Spain, ²Genomic and Genetic Diagnosis Unit, INCLIVA, Valencia, Spain, ²Genomic and Spain, ³Genetic Diagnosis, ³Genet ⁵Hematology Department, Reina Sofia University Hospital, Cordoba, ⁶Hematology Department, Virgen de la Macarena Universitario Ciudad de Jaén, Jaén, ⁸Hospital Univ. Nuestra Señora de Valme, Sevilla, ⁹Hematology Department, Francisco de Borja Hospital, Gandia, Valencia, ¹¹Department of Hematology, Vinaroz Hospital, Castellón, ¹²Hematology Department, Sagunto University Hospital, Valencia, ¹⁴Hematology Department, Carlos Haya University Hospital, Malaga

Introduction

NGS approaches have transformed our understanding of the genetic heterogeneity of CLL. However, the detection of somatic mutations and their relative frequencies is variable, which possibly reflects differences in the composition of the cohorts studied worldwide and the time point during the course of the disease when they were tested.

Considering the landscape of genomic alterations recently identified in CLL as well as the availability of new targeted therapies, it is warranted to accurately predict outcome at the individual patient level.

An international prognostic index (CLL-IPI) and the molecular index (M-IPI) are promising scoring systems to improve the precision of prognostic counseling.

The aims of the study were:

- 1) to characterize CLL patients not previously treated according to their biological profile and their impact on the prognosis
- 2) to test the hierarchical of both stratification models in general practice.

Methods

- We included all patients diagnosed of CLL according to the NCIWG guidelines in our institution between 1986 and 2016 with available DNA for MiSeq sequencing.
- Amplification and sequence analysis of IGH rearrangements were performed on either gDNA or cDNA according to the updated ERIC recommendations.
- A custom panel designed by Sequencing Multiplex was used to investigate somatic mutations with MiSeq platform. It included the following genes; TP53 (all), BIRC3 (ex 7–9), SF3B1 (ex 14–16), MYD88 (ex 5), and NOTCH1 (ex 34), ATM (all), XPO1 (ex 15-16), EGR2 (ex 2), POT1 (ex 4-9) and NFKBIE (ex 1).
- Clinical and biological data were extracted from medical.
- Times to first-treatment (TFT) curves were plotted using the Kaplan-Meier method and compared by the log-rank test.

- THIS WORK HAS BEEN SUPPORTED BY NATIONAL GRANTS: FIS PI 10/02095 and FIS PI 14/02018

Benet⁹, MA. Ruiz¹⁰, M. Montagud¹¹, I. Navarro¹², M. Fernadez-Zarzoso¹³, A. Teruel¹, M. Ortiz¹⁴, R. Andreu¹⁵, P. Amat¹, C. Solano¹, JF Chaves²,

- 93) with a 1.2:1 ratio of males to female.
- The main clinical characteristics are detailed in **Table 1**. The median

tollow-up was /	/6 (1-2	295)	months.
Table 1. Associations between a	ono mutatio	ns clini	ical and biological var

Variable		ATM (n=61, 29,8%)		<i>TP53</i> (n=30, 14,6%)		<i>NOTCH1</i> (n=26, 12,7%)		NFKBIE (n=24, 11,7%)		<i>SF3B1</i> (n=22, 10,7%)		
		%	P- value	%	P- value	%	P- value	%	P- value	%	P- value	
Binet A B C	А	n=166, 83%	23	0,38	11	0,13	11	0,81	10,5	0,89	7,5	0,14
	B C	n=34, 17%	6		4		2		2		3	
ECOG 0	0	n=168, 84,4%	24,1	0,77	11,6	0,20	12,1	0,23	11,1	0,60	8	0.57
	>0	n=31, 15,6%	5		3,5		1		1,5		2	0,57
	≤65 years	n=110, 55%	16	0,98	8	0.84	4,5	0,025	7,5	0,59	6,5	0.50
Age	>65 years	n=90, 45%	13		7	0,04	8,5		5		4	0,50
IGVH status UM	М	n=85, 41,9%	9,4	0,042	3	0,009	3,9	0,22	4,4	0,52	2,5	0,054
	UM	n=118, 58,1%	20,7		11,8		8,9		7,9		8,4	
LDH value increase	normal	n=171, 88,3%	9.8	0.035	13,8	0.75	10,7	0,20	10,2	0,84	10,7	0,27
	increase d	n=23, 11,7%	26.1		1,5	0,75	2,6		1,5		0,5	
b-2-m incr	Normal	n=150, 76,5%	21,9	0,73	9,7	0.06	7,7	0,015	7,7	0,17	9,7	0,25
	increase d	n=46, 23,5%	6,1		5,6	0,00	5,6		4,1		1,5	
ZAP70 ≤20	≤20%	n=54, 38,3%	12,1	0,84	5,7	0,57	2,8	0,069	5	0,80	4,3	0,64
	>20%	n=87, 61,7%	18,4		7,1		11,3		7,1		8,5	
≤ CD38 >	≤30%	n=109, 63,7%	15,2	0,78	7	0,03	5,8	0,004	7	0,71	5,8	0.056
	>30%	n=62, 36,3%	9,4		10,5		9,4		4,7		7	0,030
del(17p13)	No	n=179, 94,2%	26,3	0,96	12,1	<0,00 01	11,6	0,57	12,1	0,61	10	0.87
	Yes	n=11, 5.8%	1,6		3,2		1,1		1,1		0,5	0,07

- In our cohort, 166 (83%) patients were in Binet A, and 34 (17%) Binet B-C. Concerning Rai stage 123 (61,5%) were Rai 0 and 77 (38,5%) Rai I-IV. In 118 out of 203 (58,1%) IGVH was germline.
- The most frequent cytogenetic abnormalities was del(13q) in 61 (32,1%), following +12 in 39 (10,5%), del (17p) in 11 (5,9%) and del(11q) in 8 (4,2%) and 17 missed data.
- Regarding the molecular data, 61 (29,8%) carried ATM mutation, 30 (14,6%) harbored a TP53 mutation, 26 (12,7%) NOTCH1, 24 (11,7%) NFKBIE, 22 (107 (3,4%) BIRC3, 6 (2,9%) POT1 and 2 (1%) carried a *MYD88* hotspot p.L265P mutation.

Among the 40 patients with TP53 disruption, 29 had TP53 mutations, 11 had only del(17p) and 6 had both of them. - At least 1 mutation was identified in 109 of 171 (63,7%) patients; 60 (35,1%) patients had 1, 34 (19,9%) had 2, 13 (7,6%) had 3, and two

cases had 4 and 5 mutations respectively.

Conclusions

In summary, in our cohort, gene mutations frequencies were very similar to those previously described in the literature. Our study highlights that both CLL-IPI and M-IPI are useful tools for real-life practice as both identified four group of patients with significantly different TFT times.

MJ. Terol¹

